Certified Artificial Intelligence & Machine Learning course

Benefits for you

Looking to break into Full-Stack Development but don’t know the first step? Our IIT-M Pravartak certified Full-Stack Development Career Program is perfect for college students, graduates, and professionals (from IT/non-IT backgrounds) who want to transition into high-paying development roles in India’s booming tech industry.

Live

Total Learners

3 Months

For Weekdays

1:1

Doubt Sessions

1000+

Hiring Partners

Live

Total Learners

3 Months

For Weekdays

1:1

Doubt Sessions

Live

Total Learners

3 Months

For Weekdays

1:1

Doubt Sessions

1000+

Hiring Partners

Advanced Artificial Intelligence & Machine Learning Program

 Co-designed by Intel and delivered through GUVI’s industry-aligned curriculum, you'll gain hands-on experience in high-impact areas like Generative AI, Agentic AI, Deep Learning, and MLOps.

Intel & IITM Pravartak Certified Artificial Intelligence and Machine Learning Program

Powered by Intel technologies and backed by IITM Pravartak, this AI/ML Certification program is delivered through HCL GUVI’s online platform. You’ll explore high-impact areas such as Generative AI, Agentic AI, Deep Learning, and MLOps, all under the broad spectrum of Artificial Intelligence and Machine Learning.

Class
Live Online Classes
Weekend Class
6 Months weekend
Language
English, Hindi, Tamil

Intel & IITM Pravartak Certified Artificial Intelligence and Machine Learning Program

Powered by Intel technologies and backed by IITM Pravartak, this AI/ML Certification program is delivered through HCL GUVI’s online platform. You’ll explore high-impact areas such as Generative AI, Agentic AI, Deep Learning, and MLOps, all under the broad spectrum of Artificial Intelligence and Machine Learning.

Live Online Classes

6 Months weekend

English, Hindi, Tamil language

Intel & IITM Pravartak Certified Artificial Intelligence and Machine Learning Program

Powered by Intel and IITM Pravartak delivered through HCL GUVI’s platform, you'll gain hands-on experience in high-impact areas like Generative AI, Agentic AI, Deep Learning, and MLOps. 

Class
Live Online Classes
Weekend Class
6 Months weekend
Language
English, Hindi, Tamil

Benefits for you

Looking to break into Full-Stack Development but don’t know the first step? Our IIT-M Pravartak certified Full-Stack Development Career Program is perfect for college students, graduates, and professionals (from IT/non-IT backgrounds) who want to transition into high-paying development roles in India’s booming tech industry.

Class

Live Online Classes

Mentor

Expert mentors

Weekday Class

4 Months Weekday

Weekend Class

6 Months weekend

Language

English, Hindi, Tamil

Sessions

1:1 Doubt sessions

Program Fee

1,80,000/- 2,40,000/-

EMI Options

Upto 12 Months

Placement assistance

1000+ hiring Partners

Live

Total Learners

3 Months

For Weekdays

1:1

Doubt Sessions

1000+

Hiring Partners

About HCL - GUVI

HCL-GUVI is India’s first Vernacular EdTech platform of its kind. GUVI stands for ‘Grab Ur Vernacular Imprint’, dedicated to making technical education accessible and effective by breaking down language barriers. We aim to significantly impact tech upskilling, opening doors for learners across India to acquire valuable technical skills in their vernacular languages. With 3.5 million+ learners across the globe and partnerships with Google for Education, UiPath, NASSCOM, AICTE, and over 300 colleges and universities, HCL GUVI has made it possible to impart job-ready tech skills to ambitious aspirants.

Weekday Class

4 Months Weekday

Mentor

Expert mentors

20+ Project 

+ 1 Capstone Project

Sessions

1:1 Doubt sessions

6 Module 

(NLP, CV, Agentic RAG Included)

Placement Assistance

1000+ hiring Partners

Name*
Phone Number*
  • Andorra(+376)
  • United Arab Emirates(+971)
  • Afghanistan(+93)
  • Antigua & Barbuda(+1 268)
  • Anguilla(+1 264)
  • Albania(+355)
  • Armenia(+374)
  • Angola(+244)
  • Antarctica(+8)
  • Argentina(+54)
  • Samoa (American)(+1 684)
  • Austria(+43)
  • Australia(+61)
  • Aruba(+297)
  • Åland Islands(+358 18)
  • Azerbaijan(+994)
  • Bosnia & Herzegovina(+387)
  • Barbados(+1 246)
  • Bangladesh(+880)
  • Belgium(+32)
  • Burkina Faso(+226)
  • Bulgaria(+359)
  • Bahrain(+973)
  • Burundi(+257)
  • Benin(+229)
  • St Barthelemy(+590)
  • Bermuda(+1 441)
  • Brunei(+673)
  • Bolivia(+591)
  • Caribbean NL(+599)
  • Brazil(+55)
  • Bahamas(+1 242)
  • Bhutan(+975)
  • Botswana(+267)
  • Belarus(+375)
  • Belize(+501)
  • Canada(+1)
  • Cocos (Keeling) Islands(+61)
  • Congo (Dem. Rep.)(+243)
  • Central African Rep.(+236)
  • Congo (Rep.)(+242)
  • Switzerland(+41)
  • Côte d'Ivoire(+225)
  • Cook Islands(+682)
  • Chile(+56)
  • Cameroon(+237)
  • China(+86)
  • Colombia(+57)
  • Costa Rica(+506)
  • Cuba(+53)
  • Cape Verde(+238)
  • Curaçao(+599)
  • Christmas Island(+61)
  • Cyprus(+357)
  • Czech Republic(+420)
  • Germany(+49)
  • Djibouti(+253)
  • Denmark(+45)
  • Dominica(+1 767)
  • Dominican Republic(+1 809)
  • Algeria(+213)
  • Ecuador(+593)
  • Estonia(+372)
  • Egypt(+20)
  • Western Sahara(+212)
  • Eritrea(+291)
  • Spain(+34)
  • Ethiopia(+251)
  • Finland(+358)
  • Fiji(+679)
  • Falkland Islands(+500)
  • Micronesia(+691)
  • Faroe Islands(+298)
  • France(+33)
  • Gabon(+241)
  • Britain (UK)(+44)
  • Grenada(+1 473)
  • Georgia(+995)
  • French Guiana(+594)
  • Guernsey(+44 1481)
  • Ghana(+233)
  • Gibraltar(+350)
  • Greenland(+299)
  • Gambia(+220)
  • Guinea(+224)
  • Guadeloupe(+590)
  • Equatorial Guinea(+240)
  • Greece(+30)
  • South Georgia & the South Sandwich Islands(+99)
  • Guatemala(+502)
  • Guam(+1 671)
  • Guinea-Bissau(+245)
  • Guyana(+592)
  • Hong Kong(+852)
  • Honduras(+504)
  • Croatia(+385)
  • Haiti(+509)
  • Hungary(+36)
  • Indonesia(+62)
  • Ireland(+353)
  • Israel(+972)
  • Isle of Man(+44 1624)
  • India(+91)
  • British Indian Ocean Territory(+246)
  • Iraq(+964)
  • Iran(+98)
  • Iceland(+354)
  • Italy(+39)
  • Jersey(+44 1534)
  • Jamaica(+1 876)
  • Jordan(+962)
  • Japan(+81)
  • Kenya(+254)
  • Kyrgyzstan(+996)
  • Cambodia(+855)
  • Kiribati(+686)
  • Comoros(+269)
  • St Kitts & Nevis(+1 869)
  • Korea (North)(+850)
  • Korea (South)(+82)
  • Kuwait(+965)
  • Cayman Islands(+1 345)
  • Kazakhstan(+7)
  • Laos(+856)
  • Lebanon(+961)
  • St Lucia(+1 758)
  • Liechtenstein(+423)
  • Sri Lanka(+94)
  • Liberia(+231)
  • Lesotho(+266)
  • Lithuania(+370)
  • Luxembourg(+352)
  • Latvia(+371)
  • Libya(+218)
  • Morocco(+212)
  • Monaco(+377)
  • Moldova(+373)
  • Montenegro(+382)
  • St Martin (French)(+590)
  • Madagascar(+261)
  • Marshall Islands(+692)
  • North Macedonia(+389)
  • Mali(+223)
  • Myanmar (Burma)(+95)
  • Mongolia(+976)
  • Macau(+853)
  • Northern Mariana Islands(+ 1 670)
  • Martinique(+596)
  • Mauritania(+222)
  • Montserrat(+1 664)
  • Malta(+356)
  • Mauritius(+230)
  • Maldives(+960)
  • Malawi(+265)
  • Mexico(+52)
  • Malaysia(+60)
  • Mozambique(+258)
  • Namibia(+264)
  • New Caledonia(+687)
  • Niger(+227)
  • Norfolk Island(+672)
  • Nigeria(+234)
  • Nicaragua(+505)
  • Netherlands(+31)
  • Norway(+47)
  • Nepal(+977)
  • Nauru(+674)
  • Niue(+683)
  • New Zealand(+64)
  • Oman(+968)
  • Panama(+507)
  • Peru(+51)
  • French Polynesia(+689)
  • Papua New Guinea(+675)
  • Philippines(+63)
  • Pakistan(+92)
  • Poland(+48)
  • St Pierre & Miquelon(+508)
  • Pitcairn(+870)
  • Puerto Rico(+1 787)
  • Palestine(+970)
  • Portugal(+351)
  • Palau(+680)
  • Paraguay(+595)
  • Qatar(+974)
  • Réunion(+262)
  • Romania(+40)
  • Serbia(+381)
  • Russia(+7)
  • Rwanda(+250)
  • Saudi Arabia(+966)
  • Solomon Islands(+677)
  • Seychelles(+248)
  • Sudan(+249)
  • Sweden(+46)
  • Singapore(+65)
  • St Helena(+290)
  • Slovenia(+386)
  • Svalbard & Jan Mayen(+47)
  • Slovakia(+421)
  • Sierra Leone(+232)
  • San Marino(+378)
  • Senegal(+221)
  • Somalia(+252)
  • Suriname(+597)
  • South Sudan(+211)
  • Sao Tome & Principe(+239)
  • El Salvador(+503)
  • St Maarten (Dutch)(+599)
  • Syria(+963)
  • Eswatini (Swaziland)(+268)
  • Turks & Caicos Is(+1 649)
  • Chad(+235)
  • French Southern Territories(+99)
  • Togo(+228)
  • Thailand(+66)
  • Tajikistan(+992)
  • Tokelau(+690)
  • East Timor(+670)
  • Turkmenistan(+993)
  • Tunisia(+216)
  • Tonga(+676)
  • Turkey(+90)
  • Trinidad & Tobago(+1 868)
  • Tuvalu(+688)
  • Taiwan(+886)
  • Tanzania(+255)
  • Ukraine(+380)
  • Uganda(+256)
  • US minor outlying islands(+1)
  • United States(+1)
  • Uruguay(+598)
  • Uzbekistan(+998)
  • Vatican City(+379)
  • St Vincent(+1 784)
  • Venezuela(+58)
  • Virgin Islands (UK)(+1 284)
  • Virgin Islands (US)(+1 340)
  • Vietnam(+84)
  • Vanuatu(+678)
  • Wallis & Futuna(+681)
  • Samoa (western)(+685)
  • Yemen(+967)
  • Mayotte(+262)
  • South Africa(+27)
  • Zambia(+260)
  • Zimbabwe(+263)
Educational Qualification*
Current profile*
Year of Graduation*
Speaking Language*
Please fill all the required fields!
Please accept terms and conditions to proceed

By submitting, I agree to be contacted via phone, SMS, or email for offers & products, even if I am on a DNC/NDNC list

Weekday Class

4 Months Weekday

Individual Certifications

Total Learners

Total Mentors

Total Learners

Mentor

Expert mentors

Sessions

1:1 Doubt sessions

Individual Certifications

Total Learners

Total Mentors

Total Learners

20+ Projects

+ 1 Capstone Project

6 Module

NLP, CV, Agentic RAG Included

Individual Certifications

Total Learners

Total Mentors

Total Learners

Placement assistance

1000+ hiring Partners

About HCL - GUVI

HCL-GUVI is India’s first Vernacular EdTech platform of its kind. GUVI stands for ‘Grab Ur Vernacular Imprint’, dedicated to making technical education accessible and effective by breaking down language barriers. We aim to significantly impact tech upskilling, opening doors for learners across India to acquire valuable technical skills in their vernacular languages. With 3.5 million+ learners across the globe and partnerships with Google for Education, UiPath, NASSCOM, AICTE, and over 300 colleges and universities, HCL GUVI has made it possible to impart job-ready tech skills to ambitious aspirants.

Why Choose this Insightful AI/ML Certification Course

Step into the future with a course that combines Intel’s expertise in Artificial Intelligence and Machine Learning with HCL GUVI’s hands-on and vernacular learning approach.

Booming Industry Growth

The AI market in India is growing at a CAGR of 30% (2023–2030) – now is the perfect time to enter

Massive Job Demand

Over 2.3 million AI-related jobs are expected to open up in India alone.

High-Paying Careers

The average salary for AI/ML roles starts at ₹8 LPA, with the potential to earn much more as you grow

Intel Powered Program 

Learn from a course co-created with Intel, blending world-class curriculum and real-world application. 

Career-Focused Learning

Hands-on projects, industry-relevant tools, and global certification are designed to fast-track your career.

Real-World Skills

Build smart solutions using AI/ML frameworks and tools adopted by leading tech companies worldwide.

Program Highlights & Key Benefits

Learn from Industry Experts

LIVE Classes + Lifetime Access to Recorded Sessions

A Program Powered By Intel and IITM Pravartak

Special Guest Sessions by Intel Experts

Joint Certification from HCL GUVI, Intel and IITM Pravartak

End-to-end projects on AI PC

Two day immersion session at IITM Pravartak

Hands-on workshops & hackathons.

Unlimited access to practice on platforms like CodeKata, WebKata and IDE

Technical Support Available in English, Hindi, & Tamil

Digital Portfolio via GitHub

Flexible EMI Options

Immersion session provided by Intel.

Program Eligibility

This AI & ML course is designed to be accessible and inclusive for learners from all backgrounds. No Prior Coding Experience is Required. 

Students & Graduates

Ideal for final-year students, recent graduates, or those pursuing degrees in any discipline.

Working Professionals

Suitable for IT and non-IT professionals aiming to upskill or switch to AI/ML roles.

Career Switchers

Perfect for those looking to move into high-demand roles in Artificial Intelligence, Machine Learning, or Data Science.

Curriculum Overview

Unlock the potential of Artificial Intelligence and Machine Learning with this Intel-powered program that aligns with Industry standards.

Module 1

Introduction to AI and Current Trends (During Orientation)

  • Brief history of AI: From rule-based systems to deep learning
  • Key milestones in AI development
  • AI vs. Machine Learning vs. Deep Learning
  • Current trends in AI (2024–2025)
  • Generative AI and foundation models (e.g., GPT, DALL·E, Claude)
  • AI in everyday life and industries
  • Introduction to LLMs (Large Language Models)
  • Rise of multimodal AI and agentic systems
  • AI in India and global innovation landscape
  • Future possibilities and emerging AI technologies
Module 2

Setting up AI Development Environment on PC - Maximize Your Intel AI PC

  • Introduction to Windows Subsystem for Linux (WSL)
  • Setting Up Your AI Development Environment
  • Integrating Git for Source Code Management
  • Running a Full-Stack Application on Your Device
Module 3

Introduction to Python

  • Getting started with Python: Installation and setup
  • Python syntax and writing your first program
    Variables and data types
  • Type casting and input/output operations
  • Operators: Arithmetic, comparison, logical, bitwise
  • Control structures: if-else, nested conditions
  • Loops: for, while, break, continue
  • Functions: definition, arguments, return values, scope
  • Working with strings: slicing, formatting, built-in functions
  • Lists, tuples, and dictionaries: creation and manipulation
  • Using built-in Python functions and methods
    Writing modular and reusable code
  • Introduction to error handling (try-except blocks)
  • Writing and executing Python scripts from terminal/IDEs
Module 4

Advanced Python Concepts 

  • Object-Oriented Programming (OOP) in Python
  • Advanced functions and functional programming
  • Working with modules and packages
  • Exception handling
  • File handling
  • List comprehensions and generator expressions
  • Understanding Python iterators and generators
  • Working with regular expressions (re module)
  • Introduction to working with JSON and APIs
Module 5

Data Handling with Pandas

  • Introduction to Pandas and its role in data science
  • Installing and importing Pandas
  • Understanding Series and DataFrames
  • Reading and writing data (CSV, Excel, JSON, etc.)
  • Exploring and summarizing datasets
  • Data selection and filtering techniques
  • Indexing and slicing DataFrames
  • Handling missing data (NaNs)
  • Data cleaning and transformation
  • Merging, joining, and concatenating datasets
  • Grouping and aggregation operations
  • Sorting and ranking data
  • Applying functions with apply() and lambda
  • Exporting clean datasets for modeling
Module 6

Introduction to SQL

  • What is SQL and why it matters in AI & data workflows
  • Understanding relational databases and schemas
  • Setting up a SQL environment (e.g., MySQL, SQLite, PostgreSQL)
  • Writing basic queries with SELECT
  • Filtering data using WHERE, BETWEEN, LIKE, IN
  • Sorting and limiting results (ORDER BY, LIMIT)
  • Combining data using JOIN (INNER, LEFT, RIGHT, FULL)
  • Aggregation with GROUP BY, HAVING, and built-in functions (SUM, COUNT, AVG, etc.)
  • Working with subqueries and nested statements
  • Data types and constraints (NULL, PRIMARY KEY, FOREIGN KEY)
  • Creating, updating, and deleting records (INSERT, UPDATE, DELETE)
  • Best practices for structuring and querying databases
Module 7

Exploratory Data Analysis (EDA)

  • What is EDA and why it’s important
  • Workflow of an EDA process
  • Descriptive statistics and summary metrics
  • Data profiling and quality assessment
  • Detecting and handling missing values
  • Identifying outliers and anomalies
  • Visualizing distributions (histograms, box plots, KDE)
  • Exploring relationships (scatter plots, heatmaps, pair plots)
  • Correlation analysis and multicollinearity checks
  • Categorical vs numerical data exploration
  • Using Seaborn and Matplotlib for custom visualizations
  • Creating data stories and dashboards with insights
  • Documenting EDA findings for modeling phases
Module 8

Data Visualization in Python

  • Importance of data visualization in AI and data science
  • Introduction to Python visualization libraries: Matplotlib, Seaborn, Plotly
  • Creating line, bar, and scatter plots with Matplotlib
  • Styling and customizing plots (labels, legends, titles, colors)
  • Building advanced visualizations: histograms, box plots, pie charts
  • Heatmaps and correlation matrices
  • Plotting time series and trends
  • Using Seaborn for statistical visualizations (violin plots, pair plots, swarm plots)
  • Introduction to interactive visualizations with Plotly
  • Creating subplots and multi-panel charts
  • Saving and exporting high-quality visualizations
  • Best practices for visual storytelling and design clarity
Module 9

Essential Mathematics for Data Science

  • Linear Algebra: Scalars, Vectors, and Matrices, Basic Vector Operations, Dot Product
  • Intro to Calculus: Matrix Transposition, Basic Matrix Operations, Matrix Multiplication
  • Calculus Intuition: What is a Function?, The Concept of a Derivative, Finding Minima and Maxima
  • Calculus for Optimization & Introduction to Probability: Partial Derivatives, The Gradient, Gradient Descent Algorithm
  • Fundamentals of Probability: Basic Terminology, Probability Axioms & Basic Rules, Conditional Probability, Independence of Events
  • Essential Probability & Statistics: Bayes' Theorem, Descriptive Statistics, Random Variables & Probability Distributions, Tying it All Together & Next Steps
Module 10

Machine Learning Fundamentals

  • What is Machine Learning and how it differs from traditional programming

  • Categories of ML: Supervised, Unsupervised, and Reinforcement Learning

  • Understanding datasets: features, labels, and data splitting

  • Overview of the ML pipeline: preprocessing to deployment

  • Introduction to Scikit-learn and its ecosystem

  • Data preprocessing techniques
  • Model selection and training
  • Evaluating models
  • Cross-validation and overfitting vs underfitting
  • Hyperparameter tuning basics
  • Real-world use cases of ML in business and tech
  • Ethical considerations and fairness in machine learning
Module 11

Advanced Machine Learning

  • Advanced Classification Techniques

  • Sophisticated Clustering Methods

  • Dimensionality Reduction

  • Support Vector Machines (SVM)

  • Model Evaluation & Improvement

  • Ensemble Techniques
  • Reinforcement Learning
Module 12

Introduction to MLOps: Bridge the gap between Machine Learning and real-world deployment

  • What is MLOps? Why is it important?

  • ML lifecycle: from experimentation to deployment
  • Key differences between DevOps and MLOps
  • Components of the MLOps ecosystem
  • Tools and platforms overview
  • Model versioning and tracking

  • Creating reproducible ML workflows

  • Data version control and pipeline automation

  • Introduction to containers (Docker) for ML reproducibility

  • Deployment strategies

  • Infrastructure options: cloud, on-prem, hybrid

  • Monitoring models in production: drift, bias, accuracy

  • Collaboration across teams (Dev, Data Science, Ops)

  • CI/CD pipeline basics for ML projects

  • Security and ethical considerations in ML deployments

  • Hands-on demo

Module 13

Introduction to Neural Networks

  • What are neural networks and how they work

  • Biological inspiration vs artificial implementation

  • Structure of a neural network: neurons, layers, weights, and biases

  • Activation functions: ReLU, sigmoid, tanh, softmax

  • Forward propagation and loss calculation

  • Backpropagation and the learning process

  • Gradient descent and optimization techniques

  • Introduction to deep learning frameworks: TensorFlow and PyTorch

  • Building a simple neural network from scratch

  • Visualizing the training process and performance metrics

  • Overfitting and regularization techniques

  • Real-world applications of neural networks

  • Key terminology: epochs, batches, learning rate, accuracy

Module 14

Deep Neural Networks

  • Understanding the architecture of Deep Neural Networks (DNNs)

  • Benefits of depth: capturing complex patterns and hierarchies

  • Hidden layers: how many, how deep, and why it matters

  • Training challenges in deep networks

  • Optimization strategies
  • Building and training DNNs with TensorFlow/Keras

  • Activation functions in deep networks

  • Monitoring performance: loss curves, accuracy tracking

  • Model evaluation and validation techniques

  • Using callbacks and checkpoints

  • Real-world DNN applications and case studies

  • Best practices for scaling deep models

Module 15

Applied Deep Learning with PyTorch

  • Introduction to PyTorch: tensors, automatic differentiation, and the computation graph

  • PyTorch vs other frameworks: why researchers and developers prefer it

  • Building neural networks using torch.nn and nn.Module

  • Implementing forward passes and activation functions

  • Loss functions and optimizers using torch.optim

  • Writing custom training and validation loops

  • Efficient data loading using torch.utils.data.Dataset and DataLoader

  • Handling overfitting with dropout, regularization, and early stopping

  • Visualizing metrics and loss curves with TensorBoard

  • Saving and loading models using state_dict and checkpoints

  • Introduction to Intel Arc GPU architecture and AI acceleration

  • Setting up PyTorch with Intel® Extension for PyTorch (IPEX)

  • Training models on Intel Arc GPU

  • Case study: Training an image classifier on Intel Arc GPU

  • Best practices for deploying models trained with PyTorch

Module 16

Introduction to Computer Vision with CNNs

  • Introduction to Computer Vision and real-world applications

  • Challenges in interpreting images through AI

  • Image representation: pixels, channels, resolution, and color spaces

  • Why CNNs? Understanding the limitations of traditional neural networks for vision tasks

  • Fundamentals of Convolutional Neural Networks (CNNs)

  • Building a simple CNN architecture from scratch

  • Image classification workflow using TensorFlow/Keras or PyTorch

  • Working with image datasets (CIFAR-10, MNIST, etc.)

  • Data preprocessing and augmentation techniques

  • Model training, validation, and evaluation

  • Visualization of learned filters and feature maps

  • Transfer learning and using pre-trained CNNs (VGG, ResNet, MobileNet)

  • Performance tuning and avoiding overfitting in CNNs

  • Hands-on: Building a digit/image classifier using CNN

  • Introduction to edge deployment on AI-enabled devices

Module 17

Natural Language Processing (NLP)

  • Introduction to NLP and its real-world applications

  • Understanding structured vs unstructured text data

  • Text preprocessing techniques

  • Working with libraries like NLTK and spaCy
  • Text representation methods
  • Word embeddings
  • Text classification basics
  • Sequence models overview
  • Hands-on: Building a sentiment analysis classifier
  • Evaluating NLP models: accuracy, precision, recall, F1-score
  • Introduction to transfer learning in NLP
  • Ethical challenges in NLP: bias and misinformation
Module 18

Introduction to Generative AI

  • What is Generative AI?

  • Real-world applications of generative models

  • Generative vs traditional AI: key differences

  • Overview of foundational models

  • Understanding autoencoders and latent spaces

  • Introduction to Generative Adversarial Networks (GANs)

  • Introduction to Diffusion Models

  • Introduction to Large Language Models (LLMs)

  • Creative tools powered by Gen AI

  • Ethical considerations in content generation

  • Understanding hallucinations and content validation

  • The role of prompt engineering in content control

  • Hands-on demo
  • Introduction to open-source generative AI tools

  • The future of Generative AI and emerging trends

Module 19

Large Language Models (LLMs) and Prompt Engineering

  • Introduction to LLMs: what they are and how they work

  • Overview of popular models: GPT, LLaMA,Claude, Mistral, and Gemini

  • LLM capabilities and limitations

  • Tokenization and model context window

  • Few-shot, zero-shot, and chain-of-thought prompting

  • Prompt Engineering fundamentals

  • Prompt patterns for specific tasks
  • Using OpenAI’s GPT and HuggingFace models via APIs

  • Tools for prompt testing and refinement

  • Introduction to prompt chaining and dynamic prompt templates

  • Safety, alignment, and ethical concerns when working with LLMs

  • Hands-on: Crafting and refining prompts for real-world tasks

Module 20

Building AI-Powered Applications with Flask and Streamlit 

  • Introduction to web applications for AI and ML

  • Overview: Flask vs Streamlit – use cases and strengths

  • Basics of Flask

  • Basics of Streamlit
  • Structuring a basic AI application

  • Integrating pre-trained ML/LLM models into apps

  • Connecting front-end inputs to back-end predictions

  • Uploading files and handling user input

  • Hosting local vs cloud-based applications

  • Debugging and testing application workflows

  • Preparing apps for deployment (Heroku, Render, or cloud)

  • UX tips for building user-friendly AI interfaces

Module 21

Advanced Prompt Engineering and LLM Fine-Tuning

  • Beyond the basics: Prompt refinement strategies for precision

  • System prompts and role-based persona engineering

  • Few-shot learning with structured examples

  • Chain-of-thought prompting and multi-step reasoning

  • Embedding-based prompts and semantic similarity

  • Prompt chaining for multi-turn, multi-step tasks

  • Retrieval-augmented prompting vs vanilla prompting

  • Controlling tone, length, style, and response format

  • Function calling and tool use with LLMs (OpenAI, Claude)

  • Limitations of prompting and when fine-tuning is needed

  • Introduction to fine-tuning LLMs

  • Datasets for fine-tuning (custom, open-source)

  • Using Hugging Face tools to fine-tune a model (e.g., LLaMA, Mistral)

  • Evaluating fine-tuned models: performance and generalization

  • Best practices for safe and ethical deployment

Module 22

Reinforcement Learning: Fine-tune generative models through feedback-driven learning

  • Overview of RL in the context of Generative AI

  • What is Reinforcement Learning from Human Feedback (RLHF)?

  • Role of feedback loops in fine-tuning LLM behavior

  • Architectures that support RLHF (e.g., PPO, DPO)

  • Stages of RLHF

  • Algorithms used in RLHF
  • Designing reward models for generative tasks

  • Aligning language models with ethical guidelines and safety constraints

  • Case study: How OpenAI uses RLHF in ChatGPT

  • RLHF vs supervised fine-tuning – when to use what

  • Challenges in scaling RL for large models

  • Bias, interpretability, and feedback reliability

  • Hands-on example: Use a small-scale transformer with simulated feedback

  • Tools and libraries: TRL (Hugging Face), Accelerate, RLlib

Module 23

Retrieval-Augmented Generation (RAG) for AI Models

  • What is Retrieval-Augmented Generation (RAG) and why it matters

  • Key components of a RAG pipeline

  • Vector databases: FAISS, Pinecone, Weaviate overview

  • Document chunking strategies for optimal retrieval

  • Text embeddings and semantic search

  • Creating knowledge bases from PDFs, HTML, Notion, etc.

  • Connecting LLMs with retrieval layers using LangChain

  • Prompting with contextual information from retrievers

  • RAG vs traditional search vs fine-tuning: when to use what

  • Deploying a basic RAG-powered Q&A app

  • Evaluation metrics: relevancy, latency, hallucination reduction

  • Best practices for scaling RAG systems

  • Privacy and compliance in RAG-powered enterprise AI

  • Case studies: RAG in customer support, internal documentation bots

Module 24

Building a Local Retrieval-Augmented Generation (RAG) System on Intel AI PC

  • Setting Up the Intel AI PC Environment
  • Developing the RAG Pipeline
  • Optimization Techniques for Intel Hardware
  • Testing and Evaluation of the RAG System
  • Deployment and Maintenance
  • Hands on: Building a local RAG based application
Module 25

Agentic AI – Autonomous AI Systems

  • What is Agentic AI and how it differs from traditional AI models

  • Use cases of AI agents in research, productivity, business, and automation

  • Core components of an AI agent: memory, planning, reasoning, and tool use

  • Frameworks for building agents

  • Agent architecture and task decomposition

  • Integrating tools and APIs into agent workflows

  • ReAct (Reasoning + Acting) and other planning strategies

  • Short-term vs long-term memory in agent systems

  • Using vector databases and document loaders as knowledge tools

  • Creating multi-agent systems with specialized roles

  • Orchestration of concurrent agents for complex goals

  • Logging, monitoring, and controlling autonomous behavior

  • Security, constraints, and ethical boundaries in autonomous AI

  • Hands-on: Build a research assistant or data analyst AI agent

  • Future directions: self-improving and recursive agents

Module 26

Setting up Docker for AI Development

  • Introduction to Docker
  • Installing and Configuring Docker
  • Creating a Containerized AI Development Environment
  • Running and Managing ContainersRunning and Managing Containers
  • Docker Compose for Multi-Service AI Projects
  • Best Practices
Module 27

Cloud Deployment for LLM-Based Applications

  • Introduction to cloud computing: key concepts and benefits

  • Overview of major platforms: AWS, Azure, GCP, and Intel Developer Cloud

  • Cloud infrastructure essentials: compute, storage, networking

  • Hosting and deploying containerized AI apps with Docker

  • Using cloud services to run FastAPI or Streamlit apps

  • Deploying LLM APIs (e.g., OpenAI, Hugging Face) via cloud functions or REST endpoints

  • Environment setup and configuration

  • Introduction to serverless computing (Lambda, Azure Functions, Google Cloud Functions)

  • CI/CD pipelines for AI app updates

  • Working with secrets, environment variables, and model endpoints securely

  • Logging, monitoring, and scaling applications in the cloud

  • Using GPU instances to run inference with large models

  • Cost management and optimization tips

  • Hands-on: Deploy a simple LLM-powered chatbot or document Q&A system on the cloud

  • Bonus: Introduction to Intel Developer Cloud for AI acceleration

Learn From our Top Mentors

Jasmine Jeniffer J

Accenture

Data Scientist

Kousik Krishnan

Independant Trading Desk

Quant Trader

Shyam Kumar

Skit.ai

Machine Learning Solutions Lead

Thillaikkarasan M

Wells Fargo 

Lead data scientist

Learn From our Top Mentors

Jasmine Jeniffer J

Accenture

Data Scientist

Kousik Krishnan

Independant Trading Desk

Quant Trader

Shyam Kumar

Skit.ai

Machine Learning Solutions Lead

Thillaikkarasan M

Wells Fargo 

Lead data scientist

Learn From our Top Mentors

Jasmine Jeniffer J

Accenture

Data Scientist

Kousik Krishnan

Independant Trading Desk

Quant Trader

Shyam Kumar

Skit.ai

Machine Learning Solutions Lead

Thillaikkarasan M

Wells Fargo 

Lead data scientist

Get Industry-ready with Top Tools & Technologies

Learn from the Best in the Industry

Build career-ready skills with expert mentors from leading industries

How does it work?

Unlock the potential of Artificial Intelligence and Machine Learning with this comprehensive, industry-aligned program co-designed with Intel.

Step 1

Fill Out The Registration Form & Enter Your Coupon Code in the designated section and click Submit

Step 2

After Submission ,Our Career Counsellor Will Get In Touch With You and guide you throughout the payment process and help you start the course.

Step 3

Proceed to Mainbootcamp

Step 4

Complete the Program

Step 5

Get Placement Guidence

Earn Your Industry-Recognized AI/ML Certification

Step 1

Enroll

Fill Out the Form

Step 2

Career Counselor

Talk with Our Career Counselor

Step 3

Mainbootcamp

Proceed to Mainbootcamp

Step 4

Complete

Complete the Program

Step 5

Placement Guidence

Get Placement Guidence

IITM Pravartak

HCL GUVI and Intel

How does it work?

Unlock your potential with this comprehensive, industry-aligned AI/ML Course powered by Intel and IITM Pravartak.

Step 1

Enroll

Fill Out the Form

Step 2

Career Counselor

Talk with Our Career Counselor

Step 3

Mainbootcamp

Proceed to Mainbootcamp

Step 4

Complete

Complete the Program

Step 5

Placement Guidence

Get Placement Guidence

Step 1

Fill Out The Registration Form & click Submit

Step 2

After Submission, Our Career Counsellor Will Get In Touch With You and guide you throughout the payment process and help you start the course.

Step 3

Proceed to Mainbootcamp

Step 4

Complete the Program

Step 5

Get Placement Guidance

Transparent Pricing for Premium Learning

Accelerate your learning and career with a plan that works for you.

Join at Today

₹16,949/- For 12 Month

₹9412/- For 24 Month

₹1,79,999/- 2,40,000

inc. of GST

Features

  • 250+ hrs of live classes
  • 27 modules & 14 tools
  • Industry expert mentors
  • Placement guidance
  • In English, Tamil, Hindi
  • Flexible EMI- 12, 24 Months
  • 2 days Offline immersion program
  • IITM Pravartak Certification
  • Joint Certification from HCL GUVI & Intel
  • Immersion session provided by Intel.

Exclusive Offer for You!

Flat 20% OFF

Offer Ending Soon!

Take the leap with HCL GUVI, Intel & IITM Pravartak’s AI and Machine Learning program to shape the innovations of tomorrow

Here’s what our Learners say

Top Careers This AI/ML Course Prepares You For

Data Scientist

NLP Engineer

AI Researcher

Machine Learning Engineer

Computer Vision Specialist

Top Careers This AI/ML Course Prepares You For

AI Researcher

Computer Vision Specialist

Data Scientist

NLP Engineer

Machine Learning Engineer

Frequently Asked Questions

Who is eligible to enroll in this AI/ML course?

Anyone with a passion for technology and a basic understanding of computers can join this course. It is ideal for students, graduates, working professionals (from both IT and non-IT backgrounds), and career switchers. No prior coding experience is required.

What is the duration of the course?

The duration of this AI/ML course typically spans over 6 months, depending on your learning pace. With live sessions and lifetime access to recorded content, you can learn flexibly at your convenience.

Will I get to work on real-world projects?

Yes! This AI/ML course includes hands-on, end-to-end projects and workshops aligned with real-world use cases. You’ll also get a chance to work on Intel-powered AI PC environments to enhance your practical learning experience.

Are there any payment or EMI options available?

Yes, we offer flexible EMI options to make the course more affordable. You can choose a payment plan that suits your financial comfort and start learning right away.

What certification will I receive upon completion of this AI/ML course?

Upon successful completion of the AI/ML Certification Program, you will receive a joint certification from HCL GUVI, Intel and IITM Pravartak, recognized across industries. This certificate validates your AI/ML expertise and adds strong credibility to your resume or LinkedIn profile. Additionally you'll be getting a certificate from AWS

Do I need coding experience to join?

No. We start from the basics and guide you every step of the way.

Will I get a job after this program?

Yes, you’ll receive placement guidance with mock interviews, resume reviews, and referrals to 1000+ hiring partners.

Still have queries? Contact Us

Request a callback. An expert from the admission office will call you in the next 24 working hours.
You can also reach out to us at [email protected]

Still have queries? Contact Us

Request a callback. An expert from the admission office will call you in the next 24 working hours.
You can also reach out to us at [email protected]

Intel & IITM Pravartak Certified Artificial Intelligence and Machine Learning Program

Book a free career session

Name*
Phone Number*
  • Andorra(+376)
  • United Arab Emirates(+971)
  • Afghanistan(+93)
  • Antigua & Barbuda(+1 268)
  • Anguilla(+1 264)
  • Albania(+355)
  • Armenia(+374)
  • Angola(+244)
  • Antarctica(+8)
  • Argentina(+54)
  • Samoa (American)(+1 684)
  • Austria(+43)
  • Australia(+61)
  • Aruba(+297)
  • Åland Islands(+358 18)
  • Azerbaijan(+994)
  • Bosnia & Herzegovina(+387)
  • Barbados(+1 246)
  • Bangladesh(+880)
  • Belgium(+32)
  • Burkina Faso(+226)
  • Bulgaria(+359)
  • Bahrain(+973)
  • Burundi(+257)
  • Benin(+229)
  • St Barthelemy(+590)
  • Bermuda(+1 441)
  • Brunei(+673)
  • Bolivia(+591)
  • Caribbean NL(+599)
  • Brazil(+55)
  • Bahamas(+1 242)
  • Bhutan(+975)
  • Botswana(+267)
  • Belarus(+375)
  • Belize(+501)
  • Canada(+1)
  • Cocos (Keeling) Islands(+61)
  • Congo (Dem. Rep.)(+243)
  • Central African Rep.(+236)
  • Congo (Rep.)(+242)
  • Switzerland(+41)
  • Côte d'Ivoire(+225)
  • Cook Islands(+682)
  • Chile(+56)
  • Cameroon(+237)
  • China(+86)
  • Colombia(+57)
  • Costa Rica(+506)
  • Cuba(+53)
  • Cape Verde(+238)
  • Curaçao(+599)
  • Christmas Island(+61)
  • Cyprus(+357)
  • Czech Republic(+420)
  • Germany(+49)
  • Djibouti(+253)
  • Denmark(+45)
  • Dominica(+1 767)
  • Dominican Republic(+1 809)
  • Algeria(+213)
  • Ecuador(+593)
  • Estonia(+372)
  • Egypt(+20)
  • Western Sahara(+212)
  • Eritrea(+291)
  • Spain(+34)
  • Ethiopia(+251)
  • Finland(+358)
  • Fiji(+679)
  • Falkland Islands(+500)
  • Micronesia(+691)
  • Faroe Islands(+298)
  • France(+33)
  • Gabon(+241)
  • Britain (UK)(+44)
  • Grenada(+1 473)
  • Georgia(+995)
  • French Guiana(+594)
  • Guernsey(+44 1481)
  • Ghana(+233)
  • Gibraltar(+350)
  • Greenland(+299)
  • Gambia(+220)
  • Guinea(+224)
  • Guadeloupe(+590)
  • Equatorial Guinea(+240)
  • Greece(+30)
  • South Georgia & the South Sandwich Islands(+99)
  • Guatemala(+502)
  • Guam(+1 671)
  • Guinea-Bissau(+245)
  • Guyana(+592)
  • Hong Kong(+852)
  • Honduras(+504)
  • Croatia(+385)
  • Haiti(+509)
  • Hungary(+36)
  • Indonesia(+62)
  • Ireland(+353)
  • Israel(+972)
  • Isle of Man(+44 1624)
  • India(+91)
  • British Indian Ocean Territory(+246)
  • Iraq(+964)
  • Iran(+98)
  • Iceland(+354)
  • Italy(+39)
  • Jersey(+44 1534)
  • Jamaica(+1 876)
  • Jordan(+962)
  • Japan(+81)
  • Kenya(+254)
  • Kyrgyzstan(+996)
  • Cambodia(+855)
  • Kiribati(+686)
  • Comoros(+269)
  • St Kitts & Nevis(+1 869)
  • Korea (North)(+850)
  • Korea (South)(+82)
  • Kuwait(+965)
  • Cayman Islands(+1 345)
  • Kazakhstan(+7)
  • Laos(+856)
  • Lebanon(+961)
  • St Lucia(+1 758)
  • Liechtenstein(+423)
  • Sri Lanka(+94)
  • Liberia(+231)
  • Lesotho(+266)
  • Lithuania(+370)
  • Luxembourg(+352)
  • Latvia(+371)
  • Libya(+218)
  • Morocco(+212)
  • Monaco(+377)
  • Moldova(+373)
  • Montenegro(+382)
  • St Martin (French)(+590)
  • Madagascar(+261)
  • Marshall Islands(+692)
  • North Macedonia(+389)
  • Mali(+223)
  • Myanmar (Burma)(+95)
  • Mongolia(+976)
  • Macau(+853)
  • Northern Mariana Islands(+ 1 670)
  • Martinique(+596)
  • Mauritania(+222)
  • Montserrat(+1 664)
  • Malta(+356)
  • Mauritius(+230)
  • Maldives(+960)
  • Malawi(+265)
  • Mexico(+52)
  • Malaysia(+60)
  • Mozambique(+258)
  • Namibia(+264)
  • New Caledonia(+687)
  • Niger(+227)
  • Norfolk Island(+672)
  • Nigeria(+234)
  • Nicaragua(+505)
  • Netherlands(+31)
  • Norway(+47)
  • Nepal(+977)
  • Nauru(+674)
  • Niue(+683)
  • New Zealand(+64)
  • Oman(+968)
  • Panama(+507)
  • Peru(+51)
  • French Polynesia(+689)
  • Papua New Guinea(+675)
  • Philippines(+63)
  • Pakistan(+92)
  • Poland(+48)
  • St Pierre & Miquelon(+508)
  • Pitcairn(+870)
  • Puerto Rico(+1 787)
  • Palestine(+970)
  • Portugal(+351)
  • Palau(+680)
  • Paraguay(+595)
  • Qatar(+974)
  • Réunion(+262)
  • Romania(+40)
  • Serbia(+381)
  • Russia(+7)
  • Rwanda(+250)
  • Saudi Arabia(+966)
  • Solomon Islands(+677)
  • Seychelles(+248)
  • Sudan(+249)
  • Sweden(+46)
  • Singapore(+65)
  • St Helena(+290)
  • Slovenia(+386)
  • Svalbard & Jan Mayen(+47)
  • Slovakia(+421)
  • Sierra Leone(+232)
  • San Marino(+378)
  • Senegal(+221)
  • Somalia(+252)
  • Suriname(+597)
  • South Sudan(+211)
  • Sao Tome & Principe(+239)
  • El Salvador(+503)
  • St Maarten (Dutch)(+599)
  • Syria(+963)
  • Eswatini (Swaziland)(+268)
  • Turks & Caicos Is(+1 649)
  • Chad(+235)
  • French Southern Territories(+99)
  • Togo(+228)
  • Thailand(+66)
  • Tajikistan(+992)
  • Tokelau(+690)
  • East Timor(+670)
  • Turkmenistan(+993)
  • Tunisia(+216)
  • Tonga(+676)
  • Turkey(+90)
  • Trinidad & Tobago(+1 868)
  • Tuvalu(+688)
  • Taiwan(+886)
  • Tanzania(+255)
  • Ukraine(+380)
  • Uganda(+256)
  • US minor outlying islands(+1)
  • United States(+1)
  • Uruguay(+598)
  • Uzbekistan(+998)
  • Vatican City(+379)
  • St Vincent(+1 784)
  • Venezuela(+58)
  • Virgin Islands (UK)(+1 284)
  • Virgin Islands (US)(+1 340)
  • Vietnam(+84)
  • Vanuatu(+678)
  • Wallis & Futuna(+681)
  • Samoa (western)(+685)
  • Yemen(+967)
  • Mayotte(+262)
  • South Africa(+27)
  • Zambia(+260)
  • Zimbabwe(+263)
Educational Qualification*
Current profile*
Year of Graduation*
Language of speaking*
Please fill all the required fields!
Please accept terms and conditions to proceed

By submitting, I agree to be contacted via phone, SMS, or email for offers & products, even if I am on a DNC/NDNC list

Book a free career session

Name*
Phone Number*
  • Andorra(+376)
  • United Arab Emirates(+971)
  • Afghanistan(+93)
  • Antigua & Barbuda(+1 268)
  • Anguilla(+1 264)
  • Albania(+355)
  • Armenia(+374)
  • Angola(+244)
  • Antarctica(+8)
  • Argentina(+54)
  • Samoa (American)(+1 684)
  • Austria(+43)
  • Australia(+61)
  • Aruba(+297)
  • Åland Islands(+358 18)
  • Azerbaijan(+994)
  • Bosnia & Herzegovina(+387)
  • Barbados(+1 246)
  • Bangladesh(+880)
  • Belgium(+32)
  • Burkina Faso(+226)
  • Bulgaria(+359)
  • Bahrain(+973)
  • Burundi(+257)
  • Benin(+229)
  • St Barthelemy(+590)
  • Bermuda(+1 441)
  • Brunei(+673)
  • Bolivia(+591)
  • Caribbean NL(+599)
  • Brazil(+55)
  • Bahamas(+1 242)
  • Bhutan(+975)
  • Botswana(+267)
  • Belarus(+375)
  • Belize(+501)
  • Canada(+1)
  • Cocos (Keeling) Islands(+61)
  • Congo (Dem. Rep.)(+243)
  • Central African Rep.(+236)
  • Congo (Rep.)(+242)
  • Switzerland(+41)
  • Côte d'Ivoire(+225)
  • Cook Islands(+682)
  • Chile(+56)
  • Cameroon(+237)
  • China(+86)
  • Colombia(+57)
  • Costa Rica(+506)
  • Cuba(+53)
  • Cape Verde(+238)
  • Curaçao(+599)
  • Christmas Island(+61)
  • Cyprus(+357)
  • Czech Republic(+420)
  • Germany(+49)
  • Djibouti(+253)
  • Denmark(+45)
  • Dominica(+1 767)
  • Dominican Republic(+1 809)
  • Algeria(+213)
  • Ecuador(+593)
  • Estonia(+372)
  • Egypt(+20)
  • Western Sahara(+212)
  • Eritrea(+291)
  • Spain(+34)
  • Ethiopia(+251)
  • Finland(+358)
  • Fiji(+679)
  • Falkland Islands(+500)
  • Micronesia(+691)
  • Faroe Islands(+298)
  • France(+33)
  • Gabon(+241)
  • Britain (UK)(+44)
  • Grenada(+1 473)
  • Georgia(+995)
  • French Guiana(+594)
  • Guernsey(+44 1481)
  • Ghana(+233)
  • Gibraltar(+350)
  • Greenland(+299)
  • Gambia(+220)
  • Guinea(+224)
  • Guadeloupe(+590)
  • Equatorial Guinea(+240)
  • Greece(+30)
  • South Georgia & the South Sandwich Islands(+99)
  • Guatemala(+502)
  • Guam(+1 671)
  • Guinea-Bissau(+245)
  • Guyana(+592)
  • Hong Kong(+852)
  • Honduras(+504)
  • Croatia(+385)
  • Haiti(+509)
  • Hungary(+36)
  • Indonesia(+62)
  • Ireland(+353)
  • Israel(+972)
  • Isle of Man(+44 1624)
  • India(+91)
  • British Indian Ocean Territory(+246)
  • Iraq(+964)
  • Iran(+98)
  • Iceland(+354)
  • Italy(+39)
  • Jersey(+44 1534)
  • Jamaica(+1 876)
  • Jordan(+962)
  • Japan(+81)
  • Kenya(+254)
  • Kyrgyzstan(+996)
  • Cambodia(+855)
  • Kiribati(+686)
  • Comoros(+269)
  • St Kitts & Nevis(+1 869)
  • Korea (North)(+850)
  • Korea (South)(+82)
  • Kuwait(+965)
  • Cayman Islands(+1 345)
  • Kazakhstan(+7)
  • Laos(+856)
  • Lebanon(+961)
  • St Lucia(+1 758)
  • Liechtenstein(+423)
  • Sri Lanka(+94)
  • Liberia(+231)
  • Lesotho(+266)
  • Lithuania(+370)
  • Luxembourg(+352)
  • Latvia(+371)
  • Libya(+218)
  • Morocco(+212)
  • Monaco(+377)
  • Moldova(+373)
  • Montenegro(+382)
  • St Martin (French)(+590)
  • Madagascar(+261)
  • Marshall Islands(+692)
  • North Macedonia(+389)
  • Mali(+223)
  • Myanmar (Burma)(+95)
  • Mongolia(+976)
  • Macau(+853)
  • Northern Mariana Islands(+ 1 670)
  • Martinique(+596)
  • Mauritania(+222)
  • Montserrat(+1 664)
  • Malta(+356)
  • Mauritius(+230)
  • Maldives(+960)
  • Malawi(+265)
  • Mexico(+52)
  • Malaysia(+60)
  • Mozambique(+258)
  • Namibia(+264)
  • New Caledonia(+687)
  • Niger(+227)
  • Norfolk Island(+672)
  • Nigeria(+234)
  • Nicaragua(+505)
  • Netherlands(+31)
  • Norway(+47)
  • Nepal(+977)
  • Nauru(+674)
  • Niue(+683)
  • New Zealand(+64)
  • Oman(+968)
  • Panama(+507)
  • Peru(+51)
  • French Polynesia(+689)
  • Papua New Guinea(+675)
  • Philippines(+63)
  • Pakistan(+92)
  • Poland(+48)
  • St Pierre & Miquelon(+508)
  • Pitcairn(+870)
  • Puerto Rico(+1 787)
  • Palestine(+970)
  • Portugal(+351)
  • Palau(+680)
  • Paraguay(+595)
  • Qatar(+974)
  • Réunion(+262)
  • Romania(+40)
  • Serbia(+381)
  • Russia(+7)
  • Rwanda(+250)
  • Saudi Arabia(+966)
  • Solomon Islands(+677)
  • Seychelles(+248)
  • Sudan(+249)
  • Sweden(+46)
  • Singapore(+65)
  • St Helena(+290)
  • Slovenia(+386)
  • Svalbard & Jan Mayen(+47)
  • Slovakia(+421)
  • Sierra Leone(+232)
  • San Marino(+378)
  • Senegal(+221)
  • Somalia(+252)
  • Suriname(+597)
  • South Sudan(+211)
  • Sao Tome & Principe(+239)
  • El Salvador(+503)
  • St Maarten (Dutch)(+599)
  • Syria(+963)
  • Eswatini (Swaziland)(+268)
  • Turks & Caicos Is(+1 649)
  • Chad(+235)
  • French Southern Territories(+99)
  • Togo(+228)
  • Thailand(+66)
  • Tajikistan(+992)
  • Tokelau(+690)
  • East Timor(+670)
  • Turkmenistan(+993)
  • Tunisia(+216)
  • Tonga(+676)
  • Turkey(+90)
  • Trinidad & Tobago(+1 868)
  • Tuvalu(+688)
  • Taiwan(+886)
  • Tanzania(+255)
  • Ukraine(+380)
  • Uganda(+256)
  • US minor outlying islands(+1)
  • United States(+1)
  • Uruguay(+598)
  • Uzbekistan(+998)
  • Vatican City(+379)
  • St Vincent(+1 784)
  • Venezuela(+58)
  • Virgin Islands (UK)(+1 284)
  • Virgin Islands (US)(+1 340)
  • Vietnam(+84)
  • Vanuatu(+678)
  • Wallis & Futuna(+681)
  • Samoa (western)(+685)
  • Yemen(+967)
  • Mayotte(+262)
  • South Africa(+27)
  • Zambia(+260)
  • Zimbabwe(+263)
Educational Qualification*
Current profile*
Year of Graduation*
Language of speaking*
Please fill all the required fields!
Please accept terms and conditions to proceed

By submitting, I agree to be contacted via phone, SMS, or email for offers & products, even if I am on a DNC/NDNC list

Book a free career session
Name*
Phone Number*
  • Andorra(+376)
  • United Arab Emirates(+971)
  • Afghanistan(+93)
  • Antigua & Barbuda(+1 268)
  • Anguilla(+1 264)
  • Albania(+355)
  • Armenia(+374)
  • Angola(+244)
  • Antarctica(+8)
  • Argentina(+54)
  • Samoa (American)(+1 684)
  • Austria(+43)
  • Australia(+61)
  • Aruba(+297)
  • Åland Islands(+358 18)
  • Azerbaijan(+994)
  • Bosnia & Herzegovina(+387)
  • Barbados(+1 246)
  • Bangladesh(+880)
  • Belgium(+32)
  • Burkina Faso(+226)
  • Bulgaria(+359)
  • Bahrain(+973)
  • Burundi(+257)
  • Benin(+229)
  • St Barthelemy(+590)
  • Bermuda(+1 441)
  • Brunei(+673)
  • Bolivia(+591)
  • Caribbean NL(+599)
  • Brazil(+55)
  • Bahamas(+1 242)
  • Bhutan(+975)
  • Botswana(+267)
  • Belarus(+375)
  • Belize(+501)
  • Canada(+1)
  • Cocos (Keeling) Islands(+61)
  • Congo (Dem. Rep.)(+243)
  • Central African Rep.(+236)
  • Congo (Rep.)(+242)
  • Switzerland(+41)
  • Côte d'Ivoire(+225)
  • Cook Islands(+682)
  • Chile(+56)
  • Cameroon(+237)
  • China(+86)
  • Colombia(+57)
  • Costa Rica(+506)
  • Cuba(+53)
  • Cape Verde(+238)
  • Curaçao(+599)
  • Christmas Island(+61)
  • Cyprus(+357)
  • Czech Republic(+420)
  • Germany(+49)
  • Djibouti(+253)
  • Denmark(+45)
  • Dominica(+1 767)
  • Dominican Republic(+1 809)
  • Algeria(+213)
  • Ecuador(+593)
  • Estonia(+372)
  • Egypt(+20)
  • Western Sahara(+212)
  • Eritrea(+291)
  • Spain(+34)
  • Ethiopia(+251)
  • Finland(+358)
  • Fiji(+679)
  • Falkland Islands(+500)
  • Micronesia(+691)
  • Faroe Islands(+298)
  • France(+33)
  • Gabon(+241)
  • Britain (UK)(+44)
  • Grenada(+1 473)
  • Georgia(+995)
  • French Guiana(+594)
  • Guernsey(+44 1481)
  • Ghana(+233)
  • Gibraltar(+350)
  • Greenland(+299)
  • Gambia(+220)
  • Guinea(+224)
  • Guadeloupe(+590)
  • Equatorial Guinea(+240)
  • Greece(+30)
  • South Georgia & the South Sandwich Islands(+99)
  • Guatemala(+502)
  • Guam(+1 671)
  • Guinea-Bissau(+245)
  • Guyana(+592)
  • Hong Kong(+852)
  • Honduras(+504)
  • Croatia(+385)
  • Haiti(+509)
  • Hungary(+36)
  • Indonesia(+62)
  • Ireland(+353)
  • Israel(+972)
  • Isle of Man(+44 1624)
  • India(+91)
  • British Indian Ocean Territory(+246)
  • Iraq(+964)
  • Iran(+98)
  • Iceland(+354)
  • Italy(+39)
  • Jersey(+44 1534)
  • Jamaica(+1 876)
  • Jordan(+962)
  • Japan(+81)
  • Kenya(+254)
  • Kyrgyzstan(+996)
  • Cambodia(+855)
  • Kiribati(+686)
  • Comoros(+269)
  • St Kitts & Nevis(+1 869)
  • Korea (North)(+850)
  • Korea (South)(+82)
  • Kuwait(+965)
  • Cayman Islands(+1 345)
  • Kazakhstan(+7)
  • Laos(+856)
  • Lebanon(+961)
  • St Lucia(+1 758)
  • Liechtenstein(+423)
  • Sri Lanka(+94)
  • Liberia(+231)
  • Lesotho(+266)
  • Lithuania(+370)
  • Luxembourg(+352)
  • Latvia(+371)
  • Libya(+218)
  • Morocco(+212)
  • Monaco(+377)
  • Moldova(+373)
  • Montenegro(+382)
  • St Martin (French)(+590)
  • Madagascar(+261)
  • Marshall Islands(+692)
  • North Macedonia(+389)
  • Mali(+223)
  • Myanmar (Burma)(+95)
  • Mongolia(+976)
  • Macau(+853)
  • Northern Mariana Islands(+ 1 670)
  • Martinique(+596)
  • Mauritania(+222)
  • Montserrat(+1 664)
  • Malta(+356)
  • Mauritius(+230)
  • Maldives(+960)
  • Malawi(+265)
  • Mexico(+52)
  • Malaysia(+60)
  • Mozambique(+258)
  • Namibia(+264)
  • New Caledonia(+687)
  • Niger(+227)
  • Norfolk Island(+672)
  • Nigeria(+234)
  • Nicaragua(+505)
  • Netherlands(+31)
  • Norway(+47)
  • Nepal(+977)
  • Nauru(+674)
  • Niue(+683)
  • New Zealand(+64)
  • Oman(+968)
  • Panama(+507)
  • Peru(+51)
  • French Polynesia(+689)
  • Papua New Guinea(+675)
  • Philippines(+63)
  • Pakistan(+92)
  • Poland(+48)
  • St Pierre & Miquelon(+508)
  • Pitcairn(+870)
  • Puerto Rico(+1 787)
  • Palestine(+970)
  • Portugal(+351)
  • Palau(+680)
  • Paraguay(+595)
  • Qatar(+974)
  • Réunion(+262)
  • Romania(+40)
  • Serbia(+381)
  • Russia(+7)
  • Rwanda(+250)
  • Saudi Arabia(+966)
  • Solomon Islands(+677)
  • Seychelles(+248)
  • Sudan(+249)
  • Sweden(+46)
  • Singapore(+65)
  • St Helena(+290)
  • Slovenia(+386)
  • Svalbard & Jan Mayen(+47)
  • Slovakia(+421)
  • Sierra Leone(+232)
  • San Marino(+378)
  • Senegal(+221)
  • Somalia(+252)
  • Suriname(+597)
  • South Sudan(+211)
  • Sao Tome & Principe(+239)
  • El Salvador(+503)
  • St Maarten (Dutch)(+599)
  • Syria(+963)
  • Eswatini (Swaziland)(+268)
  • Turks & Caicos Is(+1 649)
  • Chad(+235)
  • French Southern Territories(+99)
  • Togo(+228)
  • Thailand(+66)
  • Tajikistan(+992)
  • Tokelau(+690)
  • East Timor(+670)
  • Turkmenistan(+993)
  • Tunisia(+216)
  • Tonga(+676)
  • Turkey(+90)
  • Trinidad & Tobago(+1 868)
  • Tuvalu(+688)
  • Taiwan(+886)
  • Tanzania(+255)
  • Ukraine(+380)
  • Uganda(+256)
  • US minor outlying islands(+1)
  • United States(+1)
  • Uruguay(+598)
  • Uzbekistan(+998)
  • Vatican City(+379)
  • St Vincent(+1 784)
  • Venezuela(+58)
  • Virgin Islands (UK)(+1 284)
  • Virgin Islands (US)(+1 340)
  • Vietnam(+84)
  • Vanuatu(+678)
  • Wallis & Futuna(+681)
  • Samoa (western)(+685)
  • Yemen(+967)
  • Mayotte(+262)
  • South Africa(+27)
  • Zambia(+260)
  • Zimbabwe(+263)
Educational Qualification*
Current profile*
Year of Graduation*
Language of speaking*
Please fill all the required fields!
Please accept terms and conditions to proceed

By submitting, I agree to be contacted via phone, SMS, or email for offers & products, even if I am on a DNC/NDNC list.

Book a free career session
Name*
Phone Number*
  • Andorra(+376)
  • United Arab Emirates(+971)
  • Afghanistan(+93)
  • Antigua & Barbuda(+1 268)
  • Anguilla(+1 264)
  • Albania(+355)
  • Armenia(+374)
  • Angola(+244)
  • Antarctica(+8)
  • Argentina(+54)
  • Samoa (American)(+1 684)
  • Austria(+43)
  • Australia(+61)
  • Aruba(+297)
  • Åland Islands(+358 18)
  • Azerbaijan(+994)
  • Bosnia & Herzegovina(+387)
  • Barbados(+1 246)
  • Bangladesh(+880)
  • Belgium(+32)
  • Burkina Faso(+226)
  • Bulgaria(+359)
  • Bahrain(+973)
  • Burundi(+257)
  • Benin(+229)
  • St Barthelemy(+590)
  • Bermuda(+1 441)
  • Brunei(+673)
  • Bolivia(+591)
  • Caribbean NL(+599)
  • Brazil(+55)
  • Bahamas(+1 242)
  • Bhutan(+975)
  • Botswana(+267)
  • Belarus(+375)
  • Belize(+501)
  • Canada(+1)
  • Cocos (Keeling) Islands(+61)
  • Congo (Dem. Rep.)(+243)
  • Central African Rep.(+236)
  • Congo (Rep.)(+242)
  • Switzerland(+41)
  • Côte d'Ivoire(+225)
  • Cook Islands(+682)
  • Chile(+56)
  • Cameroon(+237)
  • China(+86)
  • Colombia(+57)
  • Costa Rica(+506)
  • Cuba(+53)
  • Cape Verde(+238)
  • Curaçao(+599)
  • Christmas Island(+61)
  • Cyprus(+357)
  • Czech Republic(+420)
  • Germany(+49)
  • Djibouti(+253)
  • Denmark(+45)
  • Dominica(+1 767)
  • Dominican Republic(+1 809)
  • Algeria(+213)
  • Ecuador(+593)
  • Estonia(+372)
  • Egypt(+20)
  • Western Sahara(+212)
  • Eritrea(+291)
  • Spain(+34)
  • Ethiopia(+251)
  • Finland(+358)
  • Fiji(+679)
  • Falkland Islands(+500)
  • Micronesia(+691)
  • Faroe Islands(+298)
  • France(+33)
  • Gabon(+241)
  • Britain (UK)(+44)
  • Grenada(+1 473)
  • Georgia(+995)
  • French Guiana(+594)
  • Guernsey(+44 1481)
  • Ghana(+233)
  • Gibraltar(+350)
  • Greenland(+299)
  • Gambia(+220)
  • Guinea(+224)
  • Guadeloupe(+590)
  • Equatorial Guinea(+240)
  • Greece(+30)
  • South Georgia & the South Sandwich Islands(+99)
  • Guatemala(+502)
  • Guam(+1 671)
  • Guinea-Bissau(+245)
  • Guyana(+592)
  • Hong Kong(+852)
  • Honduras(+504)
  • Croatia(+385)
  • Haiti(+509)
  • Hungary(+36)
  • Indonesia(+62)
  • Ireland(+353)
  • Israel(+972)
  • Isle of Man(+44 1624)
  • India(+91)
  • British Indian Ocean Territory(+246)
  • Iraq(+964)
  • Iran(+98)
  • Iceland(+354)
  • Italy(+39)
  • Jersey(+44 1534)
  • Jamaica(+1 876)
  • Jordan(+962)
  • Japan(+81)
  • Kenya(+254)
  • Kyrgyzstan(+996)
  • Cambodia(+855)
  • Kiribati(+686)
  • Comoros(+269)
  • St Kitts & Nevis(+1 869)
  • Korea (North)(+850)
  • Korea (South)(+82)
  • Kuwait(+965)
  • Cayman Islands(+1 345)
  • Kazakhstan(+7)
  • Laos(+856)
  • Lebanon(+961)
  • St Lucia(+1 758)
  • Liechtenstein(+423)
  • Sri Lanka(+94)
  • Liberia(+231)
  • Lesotho(+266)
  • Lithuania(+370)
  • Luxembourg(+352)
  • Latvia(+371)
  • Libya(+218)
  • Morocco(+212)
  • Monaco(+377)
  • Moldova(+373)
  • Montenegro(+382)
  • St Martin (French)(+590)
  • Madagascar(+261)
  • Marshall Islands(+692)
  • North Macedonia(+389)
  • Mali(+223)
  • Myanmar (Burma)(+95)
  • Mongolia(+976)
  • Macau(+853)
  • Northern Mariana Islands(+ 1 670)
  • Martinique(+596)
  • Mauritania(+222)
  • Montserrat(+1 664)
  • Malta(+356)
  • Mauritius(+230)
  • Maldives(+960)
  • Malawi(+265)
  • Mexico(+52)
  • Malaysia(+60)
  • Mozambique(+258)
  • Namibia(+264)
  • New Caledonia(+687)
  • Niger(+227)
  • Norfolk Island(+672)
  • Nigeria(+234)
  • Nicaragua(+505)
  • Netherlands(+31)
  • Norway(+47)
  • Nepal(+977)
  • Nauru(+674)
  • Niue(+683)
  • New Zealand(+64)
  • Oman(+968)
  • Panama(+507)
  • Peru(+51)
  • French Polynesia(+689)
  • Papua New Guinea(+675)
  • Philippines(+63)
  • Pakistan(+92)
  • Poland(+48)
  • St Pierre & Miquelon(+508)
  • Pitcairn(+870)
  • Puerto Rico(+1 787)
  • Palestine(+970)
  • Portugal(+351)
  • Palau(+680)
  • Paraguay(+595)
  • Qatar(+974)
  • Réunion(+262)
  • Romania(+40)
  • Serbia(+381)
  • Russia(+7)
  • Rwanda(+250)
  • Saudi Arabia(+966)
  • Solomon Islands(+677)
  • Seychelles(+248)
  • Sudan(+249)
  • Sweden(+46)
  • Singapore(+65)
  • St Helena(+290)
  • Slovenia(+386)
  • Svalbard & Jan Mayen(+47)
  • Slovakia(+421)
  • Sierra Leone(+232)
  • San Marino(+378)
  • Senegal(+221)
  • Somalia(+252)
  • Suriname(+597)
  • South Sudan(+211)
  • Sao Tome & Principe(+239)
  • El Salvador(+503)
  • St Maarten (Dutch)(+599)
  • Syria(+963)
  • Eswatini (Swaziland)(+268)
  • Turks & Caicos Is(+1 649)
  • Chad(+235)
  • French Southern Territories(+99)
  • Togo(+228)
  • Thailand(+66)
  • Tajikistan(+992)
  • Tokelau(+690)
  • East Timor(+670)
  • Turkmenistan(+993)
  • Tunisia(+216)
  • Tonga(+676)
  • Turkey(+90)
  • Trinidad & Tobago(+1 868)
  • Tuvalu(+688)
  • Taiwan(+886)
  • Tanzania(+255)
  • Ukraine(+380)
  • Uganda(+256)
  • US minor outlying islands(+1)
  • United States(+1)
  • Uruguay(+598)
  • Uzbekistan(+998)
  • Vatican City(+379)
  • St Vincent(+1 784)
  • Venezuela(+58)
  • Virgin Islands (UK)(+1 284)
  • Virgin Islands (US)(+1 340)
  • Vietnam(+84)
  • Vanuatu(+678)
  • Wallis & Futuna(+681)
  • Samoa (western)(+685)
  • Yemen(+967)
  • Mayotte(+262)
  • South Africa(+27)
  • Zambia(+260)
  • Zimbabwe(+263)
Educational Qualification*
Current profile*
Year of Graduation*
Language of speaking*
Please fill all the required fields!
Please accept terms and conditions to proceed

By submitting, I agree to be contacted via phone, SMS, or email for offers & products, even if I am on a DNC/NDNC list.

Final Step! OTP Verification

Phone Number
  • Andorra(+376)
  • United Arab Emirates(+971)
  • Afghanistan(+93)
  • Antigua & Barbuda(+1 268)
  • Anguilla(+1 264)
  • Albania(+355)
  • Armenia(+374)
  • Angola(+244)
  • Antarctica(+8)
  • Argentina(+54)
  • Samoa (American)(+1 684)
  • Austria(+43)
  • Australia(+61)
  • Aruba(+297)
  • Åland Islands(+358 18)
  • Azerbaijan(+994)
  • Bosnia & Herzegovina(+387)
  • Barbados(+1 246)
  • Bangladesh(+880)
  • Belgium(+32)
  • Burkina Faso(+226)
  • Bulgaria(+359)
  • Bahrain(+973)
  • Burundi(+257)
  • Benin(+229)
  • St Barthelemy(+590)
  • Bermuda(+1 441)
  • Brunei(+673)
  • Bolivia(+591)
  • Caribbean NL(+599)
  • Brazil(+55)
  • Bahamas(+1 242)
  • Bhutan(+975)
  • Botswana(+267)
  • Belarus(+375)
  • Belize(+501)
  • Canada(+1)
  • Cocos (Keeling) Islands(+61)
  • Congo (Dem. Rep.)(+243)
  • Central African Rep.(+236)
  • Congo (Rep.)(+242)
  • Switzerland(+41)
  • Côte d'Ivoire(+225)
  • Cook Islands(+682)
  • Chile(+56)
  • Cameroon(+237)
  • China(+86)
  • Colombia(+57)
  • Costa Rica(+506)
  • Cuba(+53)
  • Cape Verde(+238)
  • Curaçao(+599)
  • Christmas Island(+61)
  • Cyprus(+357)
  • Czech Republic(+420)
  • Germany(+49)
  • Djibouti(+253)
  • Denmark(+45)
  • Dominica(+1 767)
  • Dominican Republic(+1 809)
  • Algeria(+213)
  • Ecuador(+593)
  • Estonia(+372)
  • Egypt(+20)
  • Western Sahara(+212)
  • Eritrea(+291)
  • Spain(+34)
  • Ethiopia(+251)
  • Finland(+358)
  • Fiji(+679)
  • Falkland Islands(+500)
  • Micronesia(+691)
  • Faroe Islands(+298)
  • France(+33)
  • Gabon(+241)
  • Britain (UK)(+44)
  • Grenada(+1 473)
  • Georgia(+995)
  • French Guiana(+594)
  • Guernsey(+44 1481)
  • Ghana(+233)
  • Gibraltar(+350)
  • Greenland(+299)
  • Gambia(+220)
  • Guinea(+224)
  • Guadeloupe(+590)
  • Equatorial Guinea(+240)
  • Greece(+30)
  • South Georgia & the South Sandwich Islands(+99)
  • Guatemala(+502)
  • Guam(+1 671)
  • Guinea-Bissau(+245)
  • Guyana(+592)
  • Hong Kong(+852)
  • Honduras(+504)
  • Croatia(+385)
  • Haiti(+509)
  • Hungary(+36)
  • Indonesia(+62)
  • Ireland(+353)
  • Israel(+972)
  • Isle of Man(+44 1624)
  • India(+91)
  • British Indian Ocean Territory(+246)
  • Iraq(+964)
  • Iran(+98)
  • Iceland(+354)
  • Italy(+39)
  • Jersey(+44 1534)
  • Jamaica(+1 876)
  • Jordan(+962)
  • Japan(+81)
  • Kenya(+254)
  • Kyrgyzstan(+996)
  • Cambodia(+855)
  • Kiribati(+686)
  • Comoros(+269)
  • St Kitts & Nevis(+1 869)
  • Korea (North)(+850)
  • Korea (South)(+82)
  • Kuwait(+965)
  • Cayman Islands(+1 345)
  • Kazakhstan(+7)
  • Laos(+856)
  • Lebanon(+961)
  • St Lucia(+1 758)
  • Liechtenstein(+423)
  • Sri Lanka(+94)
  • Liberia(+231)
  • Lesotho(+266)
  • Lithuania(+370)
  • Luxembourg(+352)
  • Latvia(+371)
  • Libya(+218)
  • Morocco(+212)
  • Monaco(+377)
  • Moldova(+373)
  • Montenegro(+382)
  • St Martin (French)(+590)
  • Madagascar(+261)
  • Marshall Islands(+692)
  • North Macedonia(+389)
  • Mali(+223)
  • Myanmar (Burma)(+95)
  • Mongolia(+976)
  • Macau(+853)
  • Northern Mariana Islands(+ 1 670)
  • Martinique(+596)
  • Mauritania(+222)
  • Montserrat(+1 664)
  • Malta(+356)
  • Mauritius(+230)
  • Maldives(+960)
  • Malawi(+265)
  • Mexico(+52)
  • Malaysia(+60)
  • Mozambique(+258)
  • Namibia(+264)
  • New Caledonia(+687)
  • Niger(+227)
  • Norfolk Island(+672)
  • Nigeria(+234)
  • Nicaragua(+505)
  • Netherlands(+31)
  • Norway(+47)
  • Nepal(+977)
  • Nauru(+674)
  • Niue(+683)
  • New Zealand(+64)
  • Oman(+968)
  • Panama(+507)
  • Peru(+51)
  • French Polynesia(+689)
  • Papua New Guinea(+675)
  • Philippines(+63)
  • Pakistan(+92)
  • Poland(+48)
  • St Pierre & Miquelon(+508)
  • Pitcairn(+870)
  • Puerto Rico(+1 787)
  • Palestine(+970)
  • Portugal(+351)
  • Palau(+680)
  • Paraguay(+595)
  • Qatar(+974)
  • Réunion(+262)
  • Romania(+40)
  • Serbia(+381)
  • Russia(+7)
  • Rwanda(+250)
  • Saudi Arabia(+966)
  • Solomon Islands(+677)
  • Seychelles(+248)
  • Sudan(+249)
  • Sweden(+46)
  • Singapore(+65)
  • St Helena(+290)
  • Slovenia(+386)
  • Svalbard & Jan Mayen(+47)
  • Slovakia(+421)
  • Sierra Leone(+232)
  • San Marino(+378)
  • Senegal(+221)
  • Somalia(+252)
  • Suriname(+597)
  • South Sudan(+211)
  • Sao Tome & Principe(+239)
  • El Salvador(+503)
  • St Maarten (Dutch)(+599)
  • Syria(+963)
  • Eswatini (Swaziland)(+268)
  • Turks & Caicos Is(+1 649)
  • Chad(+235)
  • French Southern Territories(+99)
  • Togo(+228)
  • Thailand(+66)
  • Tajikistan(+992)
  • Tokelau(+690)
  • East Timor(+670)
  • Turkmenistan(+993)
  • Tunisia(+216)
  • Tonga(+676)
  • Turkey(+90)
  • Trinidad & Tobago(+1 868)
  • Tuvalu(+688)
  • Taiwan(+886)
  • Tanzania(+255)
  • Ukraine(+380)
  • Uganda(+256)
  • US minor outlying islands(+1)
  • United States(+1)
  • Uruguay(+598)
  • Uzbekistan(+998)
  • Vatican City(+379)
  • St Vincent(+1 784)
  • Venezuela(+58)
  • Virgin Islands (UK)(+1 284)
  • Virgin Islands (US)(+1 340)
  • Vietnam(+84)
  • Vanuatu(+678)
  • Wallis & Futuna(+681)
  • Samoa (western)(+685)
  • Yemen(+967)
  • Mayotte(+262)
  • South Africa(+27)
  • Zambia(+260)
  • Zimbabwe(+263)
OTP sent to [ph.no]*
Please fill all the required fields!
Please accept terms and conditions to proceed

Thank you for showing your interest in our course. Your offer code is redeemed, our Career Expert will connect with you to help you with further process.

Please wait